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Abstract

Learning to understand the meaning of natural language is an important problem
within language processing that has the potential to revolutionize human interactions
with computer systems. Informally, the problem specification is to map natural lan-
guage text to a formal semantic representation connected to the real world. This
problem has applications such as information extraction and understanding robot
commands, and also may be helpful for other natural language processing tasks.

Human annotation is a significant bottleneck in constructing language under-
standing systems. These systems have two components that are both constructed
using human annotation: a semantic parser and a knowledge base. Semantic parsers
are typically trained on individually-annotated sentences. Knowledge bases are typ-
ically manually constructed and given to the system. While these annotations can be
provided in simple settings — specifically, when the knowledge base is small — the
annotation burden quickly becomes unbearable as the size of the knowledge base
increases. More annotated sentences are required to train the semantic parser and
the knowledge base itself requires more annotations. Alternative methods to build
language understanding systems that require less human annotation are necessary in
order to learn to understand natural language in these more challenging settings.

This thesis explores alternative supervision assumptions for building language
understanding systems with the goal of reducing the annotation burden described
above. I focus on two applications: information extraction and understanding lan-
guage in physical environments. In the information extraction application, I present
algorithms for training semantic parsers using only predicate instances from a knowl-
edge base and an unlabeled text corpus. This algorithm eliminates the requirement
for annotated sentences to train the semantic parser. I also present a new approach
to semantic parsing that probabilistically learns a knowledge base from entity-linked
text. This method reduces the amount of human annotation necessary to construct
the knowledge base. Understanding language in physical environments breaks the
assumptions of the approach above in that the learning agent must be able to perceive
its environment to produce a knowledge base. I present a model that learns to map
text to its real world referents that can be trained using annotated referents for entire
texts, without requiring annotations of parse structure or the referents of individual
words.
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Chapter 1

Introduction

This thesis is about building computer programs that understand the meaning of natural language.
This problem has captured the attention of artificial intelligence researchers since SHRDLU
(Winograd, [1970) and remains an important problem with numerous practical applications such
as personal voice assistants and information extraction systems. These applications will become
increasingly important in the future because natural language is the easiest way to interact with
robots and other embodied computer systems. Developing effective algorithms for understanding
natural language is a critical problem with numerous real-world applications.

Understanding the meaning of language is also an important problem within the field of nat-
ural language processing. World knowledge often behaves as a constraint or cue for our syntactic
interpretation. For example, consider the problem of identifying the correct prepositional phrase

attachment in the following sentences:

1. I caught the butterfly with the net.
2. I caught the butterfly with the spots.
In sentence (1), the preposition “with” modifies “caught,” while in sentence (2) it modifies

“butterfly.” Correctly disambiguating between these options requires understanding that, in the

world, it is reasonable to find butterflies with spots, but not butterflies with nets. As another



example, in coreference resolution, identifying that “Barack Obama” corefers with “president
of the US” requires world knowledge about Obama’s political position. In both of these cases,
language understanding is necessary to determine what world knowledge can be applied to re-
solve these ambiguities. These examples suggest the potential applications for natural language

understanding (combined with world knowledge) in core NLP tasks.

The problem of understanding natural language can be factored into two subproblems. The
first is semantic parsing, which is the problem of mapping natural language text to a formal rep-
resentation of its meaning known as a logical form. For example, “president of the US” might
be semantically parsed to \x.PRESIDENTOF(z, US). A typical approach to this problem is to
train a machine learning model using a corpus of text with annotated logical forms. The sec-
ond is modelling the world, which is the problem of constructing a formal representation of the
real world. This representation describes the objects that exist in the world, along with their
properties and relations between them. Throughout this thesis, I assume that this component is
provided by a logical knowledge base containing entities (e.g., OBAMA) and predicate instances
(e.g., PRESIDENTOF(OBAMA, US)). This knowledge base is typically manually constructed
and provided to the system, though it can also be learned automatically. Logical forms can
be interpreted as queries against the knowledge base, and evaluating a logical form against the
knowledge base produces its denotation, which is typically a set of entities or a truth value. In
the running example, the denotation of Az.PRESIDENTOF(x, US) is the set of all US presidents,
including OBAMA. This approach to understanding natural language has been successfully ap-
plied to several question answering tasks (Zelle and Mooney, 1996; Zettlemoyer and Collins,

2005, [2007).

A noteworthy aspect of this problem definition is that language understanding is defined rel-
ative to a knowledge base. As in model-theoretic semantics (Dowty et al., |1981), understanding
is defined as the problem of mapping from text to elements of the knowledge base. Therefore,

the choice of the knowledge base determines the subset of language that can be understood. For

2



example, above, if the knowledge base did not have a PRESIDENTOF predicate, it would not
be possible to represent the meaning of “president of the US.” Any inference capabilities of the
system are also dependent on the knowledge base. In this formulation, the choice of knowledge

base has a tremendous impact on the capabilities of a language understanding system.

The object of this thesis is to enable us to understand natural language in more challenging
settings by eliminating the obstacle of human annotation. Current approaches to language under-
standing require humans to provide (1) per-sentence semantic annotations to train the semantic
parser and (2) a knowledge base. Per-sentence semantic annotations are labor intensive to create
and the number of annotations necessary grows with the number of predicates in the knowledge
base. Unfortunately, a broad knowledge base is necessary to understand language about a broad
variety of topics. Training semantic parsers for large knowledge bases requires us to move be-
yond using manually labeled data. (Indeed, the use of additional data in recent work on semantic
parsing to Freebase suggests that current data sets are too small (Berant and Liang, 2014; Cai
and Yates, 2013b).) Knowledge bases are similarly challenging to build and even the largest
knowledge bases remain incomplete (Bollacker et al., 2008; Lenat, |1995)). In other settings, such
as understanding language in the context of a particular physical environment, the knowledge
base depends on the environment and therefore must be automatically produced by the language
understanding agent in order to generalize to new environments. These cases suggest that mov-
ing beyond a manually constructed knowledge base is also necessary. Eliminating the human
annotation bottleneck is required to enable us to understand language in these more challenging

settings.

In this thesis, I propose algorithms for language understanding that eliminate the need for
human annotation of both the knowledge base and the language’s semantics. The thesis of this
research is that language understanding systems can be constructed for both grounded and un-
grounded settings using existing resources with little to no additional human annotation. 1 sup-

port this thesis by providing a variety of learning algorithms that train language understanding



systems using easily-obtainable forms of supervision, such as unlabeled text, instead of human
annotated data. I first consider the ungrounded setting, in which the language understanding
agent is not embodied in a physical environment. Chapter |4{ describes a training algorithm for
this setting where a knowledge base is given, but no per-sentence semantic annotations are nec-
essary. Chapter [5] further reduces the dependence on a knowledge base by instead learning pred-
icate instances automatically from unannotated text. These chapters demonstrate that, given a
knowledge base, a language understanding system can be constructed with no additional human
annotation. Chapter [6| considers the grounded case, where the language being interpreted refers
to objects in a physical environment perceived by the agent. The algorithm in this chapter re-
places both forms of annotation described above with annotated denotations, which intuitively
are the real-world referents of a statement. This chapter demonstrates that simple annotations, in

the form of denotations, are sufficient to train grounded language understanding systems.

1.1 Axes of Variation

Each chapter of this work considers a distinct approach to understanding natural language that
can be characterized by a small number of axes. I highlight these axes here; later chapters will
further elaborate on the benefits and limitations of each position. Table [I.I] summarizes the

positioning of prior work and the chapters of this thesis along these axes.

1. Learning the knowledge base — Language understanding is relative to a knowledge base,
yet constructing broad coverage knowledge bases remains an open problem. Thus, a nat-
ural question is whether the knowledge base can be learned automatically. This work
considers two distinct settings. The first is to simply assume that a large knowledge base
is given to the program. This approach is typical in prior work (e.g., (Zettlemoyer and
Collins|, [2005)) and is taken in Chapter[d] The second is to learn the knowledge base while
learning to understand language. This approach is taken in Chapters [S|and [6| Somewhat

unintuitively, learning the knowledge base actually simplifies the language understanding

4



problem in an important respect: the program no longer has to learn a correspondence

between words and knowledge base predicates.

. Predicate vocabulary — Manually created knowledge bases have a closed (and relatively
limited) vocabulary of formal predicates. For example, NELL (Carlson et al., 2010) con-
tains ~ 600 predicates, such as ATHLETE(z) and TEAMPLAYSSPORT(x,y). The set of
predicates restricts the language that is understandable using the knowledge base. An open
predicate vocabulary can circumvent this limitation by treating every word as its own for-
mal predicate (Banko et al., 2007; Riedel et al., [2013). Chapters E] and E] both use open

predicate vocabularies.

. Semantic parser supervision — A key issue addressed in this work is identifying natural
and useful sources of supervision for training semantic parsers. I consider two distinct
types of supervision: unlabeled text and denotations. Unlabeled text is used in Chapters
and [5] which both consider the ungrounded setting. Unlabeled text is easy to obtain,
and can be used as training data if we assume that it expresses true statements about the
world. Chapter|[6|considers the grounded setting and uses annotated denotations, which are
the real-world referents for natural language statements. Although denotations are more
challenging to obtain than unlabeled text, they remain easier than full knowledge bases
and annotated logical forms. The grounded setting also seems to require at least a few

annotated denotations in order to learn the mapping from words to real-world objects.

. Syntactic information — Current work on semantic parsing typically assumes that no syn-
tactic information is provided to the learning agent. I also make this assumption in Chapter
[0l Although this assumption is reasonable when the language is simple, syntactic informa-
tion can provide an advantage when language becomes more complex. Chapter[dfinds that
syntactic information is extremely helpful for semantically analyzing complex language.
Chapter [5] takes this view to the extreme: it produces semantic parses using a rule-based

transformation of syntactic parses.



These four axes are intended to describe the amount and type of human annotation necessary
to train the systems in each chapter. The primary axes are 1 and 3, which directly characterize the
two main forms of human annotation provided to language understanding systems. The other two
axes interact with these. Specifically, if no knowledge base is given (axis 1), an open predicate
vocabulary seems necessary (axis 2). Syntactic information (axis 4) turns out to be very useful

when less informative annotations are given to train the semantic parser (axis 3).

1.2 Chapter Overview

This thesis is organized as follows. Two introductory chapters provide context for the contribu-
tions of this thesis. Chapter [2| provides an introduction to semantic parsing, a key subproblem
of language understanding. This chapter also defines and standardizes the terminology used
throughout this thesis. Chapter 3| describes relevant prior work.

Chapter [] introduces a distantly-supervised algorithm for training a semantic parser. This
algorithm uses a knowledge base and a large corpus of unlabeled sentences to train a semantic
parser, without any semantically-annotated sentences. The second part of this chapter extends
this distant supervision approach to incorporate syntactic information, resulting in a full syntactic
parser for English that also produces semantic analyses for portions of the input sentence. Both
parsers from this chapter are effective information extraction tools and can be used to answer
natural language queries against the NELL knowledge base.

Chapter[5]introduces a new approach to semantic parsing based on learning a knowledge base
instead of mapping text to an existing knowledge base. This approach uses manually-defined
rules to convert a sentence’s syntactic parse into a logical form containing predicates derived
from the words in the sentence. The denotations of these predicates are learned automatically
from an entity-linked text corpus using probabilistic matrix factorization. The combined system
is capable of producing the same model-theoretic semantics as a traditional semantic parser (as

in Chapter M), but is not restricted to using predicates from a particular knowledge base. On

6



"SISA} SIY) JO UONBLIBA JO SOXE Urewt Y 0} 10adsar ypim yJom Jord pue sioydeyds sisay) ay) jJo Suruonisod :1°1 qeL

JUQWIUOIIAUD
ue woly 3seq 93pd SJUQWIUOIIAUD
UONJBULIOJUT O1}OBJUAS AUB INO -jmouy ®  Qonpoid | popunoi3 ur Jursied
-y)im pauren) Josied onuBwWOS suoneoud(J uodQ | s1oyisse[d  poured] | onuewes (9] 1dey)

‘1osxed

ONUBWIAS poured] ou ‘sosied
onuewds  oonpoid 0) so[nI Arerngesoa dyedrpaid
payroads-A[fenuew yrm pauiq poured[ A[feonewo} | uado ue yPim Jursied
-wod Jasred onovuAsS DD 1X9) payuI[-Anuyg uodQ | -ne st oseq o3paymouy] | onuewes (g 1dey)
Iosxed onjuewas e Jo Jururen uorsiArddns jue)sip
ay) as1aradns 0) pasn Jueqoan UOAIS | yiim s1osted onjuewos
D)) pue sasted Aouapuadoq 1X9} poeqe[un paso[D | st oseq oSpa[mouy | Sumrei], [ 1adey)
((L00T/ [S00T
fsur[[oy pue Iokowl
M7 1110T [T 39
suer] (€107 110
/e 19 Dismoyiermy]
19€10T  [s9eA  pue
'y €107 [T 19
weldg {4107 [Suery
UONBULIOJUI J1J0BJUAS AUB JNO |  SUOIIBIOUIP JO SWLIOJ UoAId | [pue  JuelRg)  “}0)
-(pIm pauren) 1osted onuewog | [BI130] pareouuy Paso[D | st aseq a3pomouy | yiom Joud ur [eordLy,

UOISIA Are[nqedoa aseq a3pa
uoneuLIouI dNoeJuUkS | -1adns 1osred onuewag 9eOIpald | -[MOouy Y} IuruwIed




a question answering task, this approach is capable of answering many questions that queries
against Freebase cannot.

Chapter [6] describes Logical Semantics with Perception (LSP), a model for understanding
natural language in grounded environments. For example, given the statement “blue mug on
the table,” LSP can identify the segment of an image depicting a blue mug on a table. This
model combines a semantic parser with a perception function that produces a logical knowledge
base from a physical environment. This chapter also describes a weakly-supervised algorithm for
training both the semantic parser and perception function from annotated denotations. A question
answering evaluation demonstrates that this weakly-supervised has comparable performance to
a fully-supervised baseline while requiring significantly less manual annotation.

Finally, Chapter /| summarizes the lessons from this work and suggests directions for future

work.



Chapter 2

Semantic Parsing with Combinatory

Categorial Grammar

Semantic parsing is the problem of mapping natural language text to a formal representation of
its meaning, known as a logical form. This problem is one of the two key subproblems of natural
language understanding: it is the problem of mapping from natural language text to an agent’s
internal representation of the world, given by a logical knowledge base. This chapter presents
a simple algorithm for learning a semantic parser that forms the basis for learning parsers in
later chapters of this dissertation. These later chapters weaken the supervision assumptions used
in this chapter and derive new learning algorithms for these settings. The algorithm presented
in this chapter is a highly-simplified variant of published algorithms (Zettlemoyer and Collins,
2005, 2007).

This chapter considers the problem of learning a semantic parser given (1) a logical knowl-
edge base and (2) an annotated training data set of language/logical form pairs. This prob-
lem setting has been successfully used in many language understanding applications, including
answering natural language questions against a database (Zelle and Mooney, [1996)), coaching
RoboCup soccer (Ge and Mooney, 2009; Wong and Mooney, [2007), giving robots navigational

instructions (Artzi and Zettlemoyer, 2013; |Chen and Mooney, 2011} Matuszek et al., 2010), and
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parsing temporal expressions (Lee et al., 2014). For concreteness, this chapter focuses on an

imaginary natural language database query application, with input/output of the following form:

¢ Input (language): “what cities are in Texas?”

e Output (logical form): A\x.CITY(z) A LOCATEDIN(z, TEXAS).

The semantic parser built in this chapter has two components: a heuristically-defined gram-
mar, and a machine-learned parsing model. The grammar defines a set of possible logical forms
for every natural language sentence. It will be defined using Combinatory Categorial Grammar
(CCQG), a grammar formalism that tightly couples syntax and semantics, naturally facilitating
semantic parsing. However, the grammar will generally permit multiple logical forms to be pro-
duced for every natural language sentence. The role of the parsing model is to select the correct
logical form from amongst these possibilities. The presented approach will estimate both the
grammar and the parsing model from a data set of sentences with annotated logical forms, as in
the example above.

The structure of this chapter is as follows. Section [2.1]|describes the CCG grammar formal-
ism. Section [2.2]describes a simple method for using CCG to build a semantic parser. (Improve-
ments on this simple method are described later in Chapter [3]) Finally, Section[2.3|discusses the

benefits and limitations of the presented approach to semantic parsing.

2.1 Combinatory Categorial Grammar

Combinatory Categorial Grammar (Steedman, 2000; [Steedman and Baldridgel [2011) is a gram-
mar formalism that has been used extensively for both wide-coverage syntactic parsing (Auli
and Lopez, 2011a; Clark and Curran, 2007a; Hockenmaier, 2003a; Hockenmaier and Steed-
man, 2002b; [Lewis and Steedman, 2014) and semantic parsing (Artzi and Zettlemoyer, 2013
Artzi et al., 20145 |Ca1 and Yates, |2013a,bj | Krishnamurthy and Kollar, 2013; Krishnamurthy and

Mitchell, 2012, 2014; [Kwiatkowski et al., 2010, 2011} 2013} [Lee et al., [2014; Matuszek et al.|
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Syntactic category | Part of speech Example usage
N/N Adjective good person : N
NP/N Determiner the person : NP
S\N Intransitive Verb | Late : S

(S\N)/N Transitive Verb | I ate strawberries : .S
(S\N)/(S\N) Adverb I quickly ate : S
(N\N)/N Preposition person in Texas : N
(S\N)\(S\N)/N | Preposition ate in Texas : S\ IV

Table 2.1: Common syntactic categories in CCG with explanations of their usage.

2012} Reddy et al., 2014b; Zettlemoyer and Collins, 2005, 2007). CCG’s use for semantic pars-
ing is motivated by its tight coupling of syntax and semantics: words and phrases in CCG are
mapped to both a syntactic and a semantic representation, and parsing naturally combines both
of these representations to produce representations of larger phrases. Several other considera-
tions also motivate the use of CCG for semantic parsing. First, it is well-studied by linguists,
and consequently many linguistic phenomena (e.g., various forms of coordination) have estab-
lished analyses (Steedman and Baldridgel 2011). Second, CCG has a wide-coverage syntactic
treebank (Hockenmaier and Steedman, 2002a) that can be used to assist with semantic parsing
(as in Chapters 4] and [5). The wide-coverage syntactic CCG parsers built with this treebank are
another useful resource (Clark and Curranl 2007al).

Structurally, CCG is a lexicalized grammar formalism, meaning it has a large set of syntactic
categories that are combined using a small number of parsing operations. Hence, much of the
grammatical information is encoded in the syntactic categories themselves. The intuition of CCG
is that, syntactically and semantically, words and phrases behave like functions. For example, an
adjective can combine with a noun to produce another noun, as in the phrase “small town.”
Thus, the set of adjectives can be naturally identified with the set of functions that take a noun
argument and return a noun. Syntactic categories in CCG explicitly encode such argument type
specifications. The meaning of a particular adjective is then a particular function in this set — that
is, one function represents the meaning of “small,” another “large,” etc. In CCG, this function

is the word’s logical form. Parsing in CCG combines adjacent words and phrases using a small
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number of operations, such as functional application and composition. Hence, to parse the phrase
“small town,” the “small” function is applied to the argument “town.” This operation naturally

derives both a syntactic category and logical form for the combined phrase.

2.1.1 Syntactic Categories

CCG has two kinds of syntactic categories: basic and functional. Basic categories represent
phrases that do not accept arguments; typically, this set contains only N for noun, N P for noun
phrase, P P for prepositional phrase, and S for sentenceﬂ Functional categories represent phrases
that accept arguments. These categories are written as X\Y or X/Y where both X and Y
are syntactic categories. Both of these categories indicate functions that accept an argument of
category Y and return a value of category X. The direction of the slash determines where the
argument must appear: / indicates an argument on the right, and \ indicates an argument on the
left. For example, the category S\ N represents an intransitive verb; it is a function that accepts
a noun on the left and returns a sentence. Functional categories can also be nested to represent
more complex phenomena. For example, the category (S\V)/N represents a transitive verb; it
is a function that first accepts a noun on the right, then a noun on the left, and returns a sentence.

Other common syntactic categories are listed in Table [2.1]

2.1.2 Semantics

The semantics of a sentence are given by its logical form, which is a statement in a typed lambda
calculus. In this thesis, logical forms can be interpreted as queries against a knowledge base.
They are defined in a lambda calculus with two basic semantic types, e for entity and ¢ for truth
value. Functional types are built from these basic types, such as (e, t), representing functions
from entities to truth values.

I'This set can be chosen to support specific applications. For example, wide-coverage syntactic parsers assign

separate basic syntactic categories to punctuation symbols.
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Logical forms are composed of the following items:

¢ Entities such as TEXAS, of type e. The set of entities is defined by the knowledge base.

¢ Predicates are functions from entities to truth values, such as CITY(z) and LOCATEDIN(z, y).
One argument predicates are called categories and have type (e, t). Two argument pred-
icates are called relations and have type (e, (e, t)); these will be written as two-argument
functions for clarity, e.g., R(x, y), not R(z)(y). The set of predicates is also defined by the

knowledge base.

e Variables of any type. Throughout this thesis, the variables w, x, y, 2 denote entities and

f, g, h denote functions.

¢ Logical connectives such as conjunction A, disjunction V, and implication —, all of type
(t, (t,t)). Logical forms may also include negation —, with type (¢, t) and equality =, with
type (e, (e, t)).

¢ Quantification, including both existential 3 and universal V quantifiers. Quantifiers have
type ((e, ), ).

e Lambda expressions representing functions. For example, Az.—CITY(z) denotes the
function that takes an entity argument x and returns true if = is not a CITY. Lambdas
can be used to create functions with many different type specifications. For example, the
expression \f. A\z.CITY(x) A f(x) has type ({e, 1), (e, t)).

Logical forms are programs that can be evaluated on a knowledge base to return a denotation.

If the logical form has type ¢, the denotation is a truth value; if it has type (e, t), the denotation
is a set of entities. The precise value of the denotation depends on the predicate instances in the
knowledge base. For example, consider evaluating A\x.CITY(x) A LOCATEDIN(x, TEXAS) on a
knowledge base that contains CITY(PLANO) and LOCATEDIN(PLANO, TEXAS). The denotation
of this logical form is the set of entities z for which it returns true, which in this case is the
set {PLANO}. In question answering applications, the denotation is the answer to the posed

question.
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The language for logical forms used in this thesis is a fairly typical language for representing
database queries. Other work commonly includes real numbers and functions that operate on
real numbers, such as COUNT or LARGEST (e.g, (Zettlemoyer and Collins|, 2005)). These items
are omitted in this thesis because the knowledge bases used do not contain numerical informa-
tion. Naturally, other applications of semantic parsing may use different types and additional
items; for example, interpreting robot commands may require an action type and actions such as

TURNLEFT.

A correspondence between syntactic categories and semantic types ensures that parsing pro-
duces well-typed logical forms. A standard choice is to assign nouns N, noun phrases /N P and
prepositional phrases PP the type (e, t), and sentences S the type t. Note that a function f of
type (e, t) is isomorphic to a set of entities, specifically, the set of entities for which f returns
true. Thus, the denotation of a noun is the set of entities it refers to and the denotation of a sen-
tence is either true or falseE] This association naturally extends to functional syntactic categories.

For example, adjectives N/N have semantic type ({e, t), (e, )).

2.1.3 Lexicon

A CCG grammar is defined by a lexicon, which is a mapping from words to syntactic categories
and logical forms. The lexicon, along with the parsing operations described below, defines the
set of possible parses for every natural language statement. An example lexicon may include the

following entries:

2This correspondence results in a simple model-theoretic semantics for language (Dowty et al.,|1981). Although
this simple semantics is sufficient to represent the phenomena considered in this thesis, many phenomena — such
as modelling the beliefs of other agents — require a more complex correspondence between syntactic and semantic
types. However, many knowledge bases available today do not represent these phenomena, so there is little im-
mediate value in a more complex semantic analysis. This semantics is also a reasonable starting point that can be

extended in future work.
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town = N © Az.CITY(x)

Texas = N : Azr.x = TEXAS

Alex = N : Ar.x = ALEX

large := N/N : Az f(x) A MAJOR(x)

in = (N\N)/N : AfAgAx.Ty.f(y) A g(x) A LOCATEDIN(z, y)

in .= (PP/N)  : M.f

lives = (S\N)/PP : MAfAg.3x,y.f(y) A g(x) N HASRESIDENCE(x, y)
is = (S\N)/N : Mfg3x.f(x)Ag(x)

During parsing, these lexicon entries are used to initialize the set of possible syntactic cat-
egories and logical forms for each word. Note that a single word may have multiple lexicon
entries with distinct syntactic categories and logical forms; parsing must disambiguate between
these options. Further note that the lexicon entries with functional syntactic categories have a
one-to-one mapping between arguments of the syntactic category and arguments of the logical
form. For example, in the lexicon entry for “lives,” the argument f corresponds to the PP and the
argument g corresponds to the V. During parsing, f and g will be assigned values that represent

the semantics of the corresponding syntactic arguments.

2.1.4 Parsing

Parsing in CCG combines adjacent categories using a small number of parsing operations, or
combinators. These combinators simultaneously operate on syntactic categories and logical
forms, jointly deriving the syntax and semantics of the parsed text. A parse in CCG is known as

a derivation.

Application

The most commonly-used combinator in CCG is functional application:
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X/Y:f Y:g = X : f(g)
Y:g X\Y:f = X:f(g9)

The first rule, forward application, states that the category X /Y can be applied to the category
Y on the right, returning category X. Similarly, the logical form f is applied to g to produce the
logical form for the returned category. Given the sample lexicon above, this rule can be used to

produce the following parse:

major town
N/N : Af x.f(x) NLARGE(z) N : Az.CITY(x)
N : Az.CITY(x) A LARGE(x)

The second rule, backward application, is analogous to the first, except that the argument
appears on the left. A grammar that only uses functional application is known as a Categorial

Grammar (Ajdukiewicz, [1935; Bar-Hillel, |1953).

Composition

CCG extends Categorial Grammar with a number of additional combinators, such as forward

and backward composition:

X/)Y:f Y/Z:9 = X/Z:Xz.f(g(2))
Y\Z:9 X\Y:f = X\Z:Xz.f(9(2))

The first composition rule states that the category X /Y can compose with the category Y/Z
to produce the category X /Z. This rule makes intuitive sense: Y/Z is a function that takes a Z
and produces a Y, so applying X /Y to the resulting Y gives us a function from Z to X, or the
category X /Z. The second composition rule is analogous to the first but in the opposite direction.

A simple example of composition is:

really lives
(S\N)/(S\N) : Af.f (S\N)/PP : Af.Ag.3x,y.f(y) A g(x) N HASRESIDENCE(z, y)
(S\N)/PP : \fAg.3z,y.f(y) A g(x) N HASRESIDENCE(x, )
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In many cases, composition is used with coordination or type-raising to parse sentences that
cannot be parsed with only functional application. Examples of these uses are given below.
Composition also has several variants that compose deeper arguments. For example, the

following rule composes a one-argument category with a two-argument category:
XY :f (Y/W)/Z: Az w.g(z)(w) = (X/W)/Z : Xz w.f(g(2)(w))

Another variant, crossed composition, can be used to compose syntactic categories with dif-

ferent argument directionalities:

X/)Y: